Modeling wind auctions as a participation game

Silvester van Koten UJEP, VSE

- Consider the following case
- To entering a business
 - Need to win a license in an auction
 - considerable (sunk) bid preparation costs

- Renewables were supported by feed-in tariffs in many EU countries
 - big drawbacks (costly and hard to control)
- New system by auctioning the support in a reversed auction
 - Limited number of "support units"
 - Win support units by bidding the price you would like to have guaranteed.
 - Lowest prices win

- Focus on German auctions for support to onshore wind (EEG 2014)
 - Bid eligibility requirement
 - permits necessary for the realization of the project.
 - Form of (sunk) bid preparation costs
 - Can be up to 10% of total project cost!
- Bid preparation costs is a well-known phenomena
 - Recent case: British printing firm De La Rue
 - lost bid for printing order of new UK passports
 - profit warning, due to the large bid preparation costs.
 - £4m for contract of ~ £490m -> 0.8%!
- What are the effects of the much higher bid preparation costs in the German onshore wind support auctions?

• The model - setup

Stage 1

- The Auctioneer announces an auction with U units.
- *N* potential bidders decide simultaneously whether to enter and pay *LFC*
- Mixed strategy: each potential bidder enters with probability q

Stage 2

- *n* actual bidder entered (common knowledge)
- Other bidders receive outside option OO
- Actual bidders bid in an UPA auction.
 - Uniform price equal to first rejected bid

(with 1 unit capacity)

- If too many people show up -> price low
- If too few people show up -> price high

 $\alpha[q] = \sum_{n=1}^{U} \left(q^{n-1} (1-q)^{N-n} \right) \binom{N-1}{n-1}$

The simulation

Simulation parameters

(actual bidders)

(Potential bidders)

- N=30
- *n*=1,...,25
- *MC*=5
- CAP=100

FIXED • LFC = 30

The simulation

Simulation parameters

(actual bidders)

(Potential bidders)

- N=30
- *n*=1,...,25
- *MC*=5
- CAP=100

FIXED DISTRIBUTION • LFC = 30 LFC iud [20,40]

• Decreasing CAP may help?

- Decreasing CAP may help?
 - Lowers cost due to excess entry
 - Increases cost due to shortage of entry

Pre-investment costs only 1%

- Conclusion
 - Theory predicts that sunk pre-investment in an auction:
 - Creates a stochastic process of entry
 - Excess entry
 - Shortage of entry
 - The increase in cost is paid by the government
 - Higher auction price
 - Cost of unimplemented projects
- Solutions
 - Lowering the CAP does not help
 - Reduces excess entry
 - Increases shortage of entry
 - Lowering the pre-investment helps
 - Lowers excess entry and shortage of entry
 - Perhaps refundable bonds for bidders' commitment?

- Assumptions
 - One-shot game
 - UPA instead of DA
 - Single-unit demand

Symbol	Reference
Exogenous variables	
U	Capacity on auction
N	Population of potential bidders
LFC	The levilized fixed cost for the full project
МС	Marginal cost of producing (assumed con-
	stant)
$\delta \overline{LFC}$ (where 0 <	The (administrative) cost of entry in the
$\delta < 1$)	auction auction
CAP	A price cap set by the regulator
00	The outside option of the potential bidders
VOUL	Value Of Uncontracted Load
RA	risk aversion parameter in the utility function
	$u[x] = x^{RA}$
Endogenous variables	
n	The number of actual bidders
q	Probability of entering (endogeneous)
$\alpha = P[n \le U M, q]$	Probability that the number of actual bidders
	is insufficient or just sufficient $n \leq U$